Dive Deeper into Rectifying Homography for Stereo Camera Online Self-Calibration
Hongbo Zhao
Yikang Zhang
Rui Fan
[Paper]
[GitHub]
The code can be found in this repository.

Abstract

Accurate estimation of stereo camera extrinsic parameters is the key to guarantee the performance of stereo matching algorithms. In prior arts, the online self-calibration of stereo cameras has commonly been formulated as a specialized visual odometry problem, without taking into account the principles of stereo rectification. In this paper, we first delve deeply into the concept of rectifying homography, which serves as the cornerstone for the development of our novel stereo camera online self-calibration algorithm, for cases where only a single pair of images is available. Furthermore, we introduce a simple yet effective solution for global optimum extrinsic parameter estimation in the presence of stereo video sequences. Additionally, we emphasize the impracticality of using three Euler angles and three components in the translation vectors for performance quantification. Instead, we introduce four new evaluation metrics to quantify the robustness and accuracy of extrinsic parameter estimation, applicable to both single-pair and multi-pair cases. Extensive experiments conducted across indoor and outdoor environments using various experimental setups validate the effectiveness of our proposed algorithm. The comprehensive evaluation results demonstrate its superior performance in comparison to the baseline algorithm. Our source code, demo video, and supplement are publicly available at at https://mias.group/StereoCalibrator/.


Video


[Youtube Video Link]

Paper and Supplementary Material

H. Zhao, Y. Zhang, R. Fan.
Dive Deeper into Rectifying Homography for Stereo Camera Online Self-Calibration
(hosted on ArXiv)




Acknowledgements

All authors are with the College of Electronics \& Information Engineering, Shanghai Research Institute for Intelligent Autonomous Systems, the State Key Laboratory of Intelligent Autonomous Systems, and Frontiers Science Center for Intelligent Autonomous Systems, Tongji University, Shanghai 201804, China (e-mails: \{hongbozhao, yikangzhang, qjchen\}@tongji.edu.cn, {rui.fan@ieee.org}).