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I. DATASETS1

We utilize two public datasets to evaluate the performance2

of our proposed methods: Cityscapes [1] and KITTI Seman-3

tics [2] datasets. Both the Cityscapes and KITTI Semantics4

datasets are highly regarded in autonomous driving research5

due to their comprehensive annotations, diversity in urban6

environments, and support for advancing scene parsing in7

challenging driving scenarios. Their details are as follows:8

• The Cityscapes dataset offers real-world stereo images9

with a resolution of 2,048×1,024 pixels. It captures10

a variety of road conditions, traffic scenarios, diverse11

weather, and lighting conditions. This diversity makes it12

an ideal choice for models aimed at generalizable scene13

parsing across different urban environments. It includes14

pixel-level annotations for 19 semantic classes relevant to15

driving, including pedestrians, vehicles, and road mark-16

ings, which are crucial for detailed and comprehensive17

scene understanding. Moreover, Cityscapes is commonly18

used as a benchmark in autonomous driving research,19

providing a solid basis for comparing the performance20

of different algorithms in scene parsing. We follow the21

official division for the training and validation sets, com-22

prising 2,975 images for training and 500 for validation.23

• The KITTI Semantics dataset consists of 200 real-24

world images taken from diverse driving scenarios. It25

includes semantic annotations for 19 different classes,26

consistent with the Cityscapes [1] dataset. The images are27

randomly split into training and validation sets at a ratio28

of 3:1. KITTI Semantics dataset provides synchronized29

sparse depth data alongside RGB images using a Velo-30

dyne HDL-64E LiDAR system, which is invaluable for31

applications requiring spatial awareness and precise depth32

perception. This depth information supports advanced33

understanding of 3D structure in driving scenes. Captured34

using a sensor-equipped vehicle on real streets, KITTI35

Semantics includes challenging conditions, such as occlu-36

sions, dynamic objects, and varying perspectives, making37

it highly representative of real-world driving scenes.38

KITTI is widely recognized in autonomous driving re-39

search as a rigorous testbed, especially for algorithms40

that need to perform well in challenging, real-world 41

conditions. 42

II. IMPLEMENTATION DETAILS 43

Our model was trained for 20,000 iterations on an NVIDIA 44

RTX 3090 GPU, employing the AdamW optimizer [3]. The 45

initial learning rate is 1 × 10−3 with a weight decay of 46

5 × 10−2. To preserve the original aspect ratio of the 47

dataset images, the Cityscapes dataset images were resized 48

to a resolution of 1,792 × 896, while the KITTI Semantics 49

dataset images were resized to 2,968 × 896. This resizing ap- 50

proach ensures consistency in aspect ratio across the datasets, 51

allowing for accurate and comparable experimental results. 52

Then, images were randomly cropped to a size of 448 × 53

448 pixels during the training process. The batch size is set 54

to three to balance computational efficiency with memory 55

constraints, ensuring stable model training. To enhance the 56

model’s robustness, we employed standard data augmentation 57

techniques, such as random color adjustments, photometric 58

distortion, rescaling, and flipping. 59

III. COMPARISONS OF VFMS WITH DIFFERENT 60

DECODERS 61

In this subsection, we conduct quantitative comparisons of 62

VFMs with different decoders on the Cityscapes [1] and KITTI 63

Semantics [2] datasets, respectively. As shown in Table I, 64

Depth Anything V1 [9] achieves superior performance when 65

the decoder is UperNet [6]. This observation may be attributed 66

to the extensive receptive fields, which are enhanced by the 67

pyramid pooling module at the final stage. Given the excellent 68

performance of UperNet, our experiments will uniformly adopt 69

it as the decoder. Moreover, we observe that Segmenter [7] 70

consistently outperforms other Transformer-based methods. 71

Conversely, the results of the more impressive Mask2Former 72

[8] are unsatisfactory. We speculate that these unexpected 73

results may be due to the smaller crop size, which restricts 74

the range of spatial features that deformable convolutions can 75

access, further reducing the model’s ability to deform its kernel 76

over meaningful parts of the image. Therefore, for resource- 77

constrained driving scene parsing, CNN-based methods are 78
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TABLE I: Quantitative comparisons of VFMs with different decoders on the Cityscapes and KITTI Semantics datasets.

Dataset VFM Backbone Decoder Type Decoder mFsc (%) ↑ mIoU (%) ↑ aAcc (%) ↑ mPre (%) ↑ mRec (%) ↑
C

ity
sc

ap
es

DINOv2 [4]

CNN-Based
DANet [5] 88.19 79.75 95.93 88.69 87.90

UperNet [6] 88.94 80.88 96.21 89.12 88.89

Transformer-Based
Segmenter [7] 87.65 78.98 95.65 88.45 86.99

Mask2Former [8] 81.63 67.56 95.43 77.27 78.02

Depth Anything V1 [9]

CNN-Based
DANet [5] 88.49 80.19 96.16 89.09 88.11

UperNet [6] 89.20 81.24 96.41 90.12 88.41

Transformer-Based
Segmenter [7] 88.38 80.08 96.05 89.95 87.08

Mask2Former [8] 79.88 65.83 95.43 81.06 74.96

Depth Anything V2 [10]

CNN-Based
DANet [5] 88.35 79.98 96.02 88.52 88.30

UperNet [6] 88.93 80.85 96.27 89.54 88.44

Transformer-Based
Segmenter [7] 87.88 79.33 95.86 89.12 86.84

Mask2Former [8] 81.53 63.86 95.21 77.34 73.51

K
IT

T
IS

em
an

tic
s

DINOv2 [4]

CNN-Based
DANet [5] 86.59 77.79 95.32 88.25 85.63

UperNet [6] 86.90 78.28 95.37 87.84 86.52

Transformer-Based
Segmenter [7] 85.41 76.92 95.27 89.63 83.56

Mask2Former [8] 76.71 53.43 94.27 81.93 61.22

Depth Anything V1 [9]

CNN-Based
DANet [5] 86.61 78.07 95.42 89.77 84.83

UperNet [6] 86.28 77.65 95.58 89.50 84.55

Transformer-Based
Segmenter [7] 85.16 76.60 95.62 89.86 82.90

Mask2Former [8] 80.56 52.35 94.46 81.51 59.88

Depth Anything V2 [10]

CNN-Based
DANet [5] 86.51 77.63 95.17 88.51 85.48

UperNet [6] 87.36 79.14 95.61 89.41 86.13

Transformer-Based
Segmenter [7] 85.80 77.23 95.38 89.27 84.09

Mask2Former [8] 78.26 54.07 94.30 76.09 61.97

TABLE II: The amounts of parameters, Flops and FPS of HFIT
and other methods on the Cityscapes dataset.

Methods Params(M) Flops (GFLOPs) FPS (img/s)

SNE-RoadSeg [11] 201.33 410.11 1.67

OFFNet [12] 25.22 21.54 1.22

MFNet [13] 0.74 6.12 4.78

FuseNet [14] 44.18 186.50 3.10

OCRNet [15] 55.52 176.83 2.03

KNet [16] 60.41 157.77 1.94

EMANet [17] 39.99 129.81 2.99

Single-Modal VFMs 308.11 313.74 1.32

ViTAdapter [18] 329.57 437.37 0.48

ViT-CoMer [19] 390.81 610.86 0.32

HFIT(ours) 412.52 471.56 0.20

more appropriate, as they prioritize local feature extraction1

and progressively construct a comprehensive understanding,2

making them more robust when dealing with limited input3

sizes. Whereas for transformer-based methods that highly rely4

on the global context, scenarios with diverse datasets and5

training spaces are more suitable for them, allowing them to6

capture long-range dependencies among features at different7

spatial locations.8

IV. PARAMETERS, FLOPS AND FPS COMPARISONS 9

As shown in Table II, HFIT has the highest number of 10

parameters and FLOPs among all the methods, resulting in 11

the lowest Frames per second (FPS) of 0.20 img/s. Compared 12

to previous models like SNE-RoadSeg [11] and FuseNet [14], 13

HFIT’s substantial parameter count and computational cost 14

reflect its complex architecture, likely due to an enhanced 15

feature extraction capability and deeper layers aimed at captur- 16

ing intricate semantic information from driving scenes. This 17

complexity is beneficial for tasks demanding high accuracy 18

but results in a trade-off with inference speed, especially on 19

large datasets like Cityscapes. In contrast, lightweight models 20

like MFNet [13] maintain higher FPS at the cost of reduced 21

representational power. To address this trade-off, a potential 22

future strategy could involve optimizing HFIT’s architecture 23

by applying parameter reduction techniques, such as pruning 24

or quantization, or by incorporating knowledge distillation 25

strategy to retain performance while reducing model size. 26

V. DISCUSSION 27

The advancements in multi-modal models for autonomous 28

driving have opened new pathways for robust scene under- 29

standing and decision-making. In this section, we discuss how 30

HFIT can contribute to advancing recent studies on large 31

models in autonomous driving. 32

• 3D Spatial Understanding: LiDAR-LLM [20] leverages 33

large language models (LLMs) for understanding sparse 34
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outdoor LiDAR data, offering a powerful approach for 3D1

scene comprehension. If combined with LiDAR-LLM,2

HFIT could better handle LiDAR-based data and gain3

deeper insights into 3D spatial structures within driving4

scenes. This would allow HFIT to process LiDAR data5

and depth-based visual cues simultaneously, improving6

its overall scene parsing and 3D spatial understanding7

abilities of driving environments.8

• Multi-modal Contextual Understanding: The integra-9

tion of LLMs into the HFIT framework would enable the10

model to interpret ambiguous or complex visual inputs11

through a language-informed lens. This capability could12

significantly improve semantic alignment across multi-13

ple sensor modalities (e.g., RGB, depth, and LiDAR),14

allowing HFIT to understand context more effectively.15

By leveraging LLMs, HFIT could contextualize visual16

features in the driving environment and make better17

decisions based on high-level semantic understanding.18

• Graph-Based Reasoning for Sequential Decision-19

Making: One promising direction for the future evolution20

of HFIT lies in incorporating graph-based reasoning21

for multi-step decision-making. HFIT currently excels at22

parsing RGB-D driving scenes, but it operates primarily23

as a static model that processes inputs in a single step. In24

contrast, DriveLM [21] introduces the concept of Graph25

VQA, where reasoning is structured through a series26

of perception, prediction, and planning question-answer27

pairs. By integrating this multi-step reasoning process28

into HFIT, we could enable it to handle more dynamic29

and evolving driving environments, where decisions need30

to be continuously updated based on new inputs. For ex-31

ample, HFIT could first localize key objects in the scene,32

then predict possible interactions between those objects33

(e.g., vehicle trajectories or pedestrian movements), and34

finally plan actions based on these predictions. This35

would bring HFIT closer to mimicking human-like rea-36

soning in driving situations, making it more adaptable37

and responsive to real-time challenges.38

In conclusion, the future evolution of HFIT lies in in-39

tegrating advancements from recent multi-modal models in40

autonomous driving. These advancements would make HFIT41

not only more accurate and robust but also more flexible and42

human-like in its decision-making process, paving the way for43

smarter and more interactive autonomous driving systems.44

REFERENCES45

[1] M. Cordts et al., “The CityScapes dataset for semantic urban scene46

understanding,” in Proceedings of the IEEE Conference on Computer47

Vision and Pattern Recognition (CVPR), 2016, pp. 3213–3223. 148

[2] M. Menze and A. Geiger, “Object scene flow for autonomous vehicles,”49

in Proceedings of the IEEE/CVF Conference on Computer Vision and50

Pattern Recognition (CVPR), 2015, pp. 3061–3070. 151

[3] I. Loshchilov and F. Hutter, “Decoupled weight decay regularization,”52

in International Conference on Learning Representations (ICLR), 2019.53

154

[4] M. Oquab et al., “DINOv2: Learning robust visual features55

without supervision,” Computing Research Repository (CoRR), vol.56

abs/2304.07193, 2023. [Online]. Available: https://arxiv.org/abs/2304.57

07193 258

[5] H. Xue et al., “DANet: Divergent activation for weakly supervised object59

localization,” in Proceedings of the IEEE/CVF International Conference60

on Computer Vision (ICCV), 2019, pp. 6589–6598. 261

[6] T. Xiao et al., “Unified perceptual parsing for scene understanding,” in 62

Proceedings of the European Conference on Computer Vision (ECCV), 63

2018, pp. 418–434. 1, 2 64

[7] R. Strudel et al., “Segmenter: Transformer for semantic segmentation,” 65

in Proceedings of the IEEE/CVF International Conference on Computer 66

Vision (ICCV), 2021, pp. 7262–7272. 1, 2 67

[8] B. Cheng et al., “Masked-attention mask Transformer for universal 68

image segmentation,” in Proceedings of the IEEE/CVF Conference on 69

Computer Vision and Pattern Recognition (CVPR), 2022, pp. 1290– 70

1299. 1, 2 71

[9] L. Yang et al., “Depth Anything: Unleashing the power of large-scale 72

unlabeled data,” in 2024 IEEE/CVF Conference on Computer Vision and 73

Pattern Recognition (CVPR), 2024, pp. 10 371–10 381. 1, 2 74

[10] Yang, Lihe et al., “Depth Anything V2,” Computing Research 75

Repository (CoRR), vol. abs/2406.09414, 2024. [Online]. Available: 76

https://arxiv.org/abs/2406.09414 2 77

[11] R. Fan et al., “SNE-RoadSeg: Incorporating surface normal informa- 78

tion into semantic segmentation for accurate freespace detection,” in 79

Proceedings of the European Conference on Computer Vision (ECCV). 80

Springer, 2020, pp. 340–356. 2 81

[12] C. Min et al., “ORFD: A dataset and benchmark for OFF-Road 82

freespace detection,” in 2022 International Conference on Robotics and 83

Automation (ICRA). IEEE, 2022, pp. 2532–2538. 2 84

[13] Q. Ha et al., “MFNet: Towards real-time semantic segmentation for 85

autonomous vehicles with multi-spectral scenes,” in 2017 IEEE/RSJ 86

International Conference on Intelligent Robots and Systems (IROS). 87

IEEE, 2017, pp. 5108–5115. 2 88

[14] Hazirbas et al., “FuseNet: Incorporating depth into semantic segmen- 89

tation via fusion-based cnn architecture,” in Proceedings of the Asian 90

Conference on Computer Vision (ACCV). Springer, 2017, pp. 213–228. 91

2 92

[15] Y. Yuan et al., “Object-contextual representations for semantic segmen- 93

tation,” in Proceedings of the European Conference on Computer Vision 94

(ECCV). Springer, 2020, pp. 173–190. 2 95

[16] W. Zhang et al., “K-Net: Towards unified image segmentation,” Ad- 96

vances in Neural Information Processing Systems (NeurIPS), vol. 34, 97

pp. 10 326–10 338, 2021. 2 98

[17] X. Li et al., “Expectation-maximization attention networks for semantic 99

segmentation,” in Proceedings of the IEEE/CVF International Confer- 100

ence on Computer Vision (ICCV), 2019, pp. 9167–9176. 2 101

[18] Z. Chen et al., “Vision Transformer adapter for dense predictions,” 102

in The Eleventh International Conference on Learning Representations 103

(ICLR), 2023. 2 104

[19] C. Xia et al., “ViT-CoMer: Vision Transformer with convolutional multi- 105

scale feature interaction for dense predictions,” in Proceedings of the 106

IEEE/CVF Conference on Computer Vision and Pattern Recognition 107

(CVPR), 2024, pp. 5493–5502. 2 108

[20] S. Yang et al., “Lidar-LLM: Exploring the potential of large 109

language models for 3D lidar understanding,” Computing Research 110

Repository (CoRR), vol. abs/2312.14074, 2023. [Online]. Available: 111

https://arxiv.org/abs/2312.14074 2 112

[21] C. Sima et al., “DriveLM: Driving with graph visual question answer- 113

ing,” Computing Research Repository (CoRR), vol. abs/2312.14150, 114

2023. [Online]. Available: https://arxiv.org/abs/2312.14150 3 115

https://arxiv.org/abs/2304.07193
https://arxiv.org/abs/2304.07193
https://arxiv.org/abs/2304.07193
https://arxiv.org/abs/2406.09414
https://arxiv.org/abs/2312.14074
https://arxiv.org/abs/2312.14150

	Datasets
	Implementation Details
	Comparisons of VFMs with Different Decoders
	Parameters, Flops and FPS Comparisons
	Discussion
	References

