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I. DATASETS

We utilize two public datasets to evaluate the performance
of our proposed methods: Cityscapes [!] and KITTI Seman-
tics [2] datasets. Both the Cityscapes and KITTI Semantics
datasets are highly regarded in autonomous driving research
due to their comprehensive annotations, diversity in urban
environments, and support for advancing scene parsing in
challenging driving scenarios. Their details are as follows:

« The Cityscapes dataset offers real-world stereo images
with a resolution of 2,048x1,024 pixels. It captures
a variety of road conditions, traffic scenarios, diverse
weather, and lighting conditions. This diversity makes it
an ideal choice for models aimed at generalizable scene
parsing across different urban environments. It includes
pixel-level annotations for 19 semantic classes relevant to
driving, including pedestrians, vehicles, and road mark-
ings, which are crucial for detailed and comprehensive
scene understanding. Moreover, Cityscapes is commonly
used as a benchmark in autonomous driving research,
providing a solid basis for comparing the performance
of different algorithms in scene parsing. We follow the
official division for the training and validation sets, com-
prising 2,975 images for training and 500 for validation.

o The KITTI Semantics dataset consists of 200 real-
world images taken from diverse driving scenarios. It
includes semantic annotations for 19 different classes,
consistent with the Cityscapes [ 1] dataset. The images are
randomly split into training and validation sets at a ratio
of 3:1. KITTI Semantics dataset provides synchronized
sparse depth data alongside RGB images using a Velo-
dyne HDL-64E LiDAR system, which is invaluable for
applications requiring spatial awareness and precise depth
perception. This depth information supports advanced
understanding of 3D structure in driving scenes. Captured
using a sensor-equipped vehicle on real streets, KITTI
Semantics includes challenging conditions, such as occlu-
sions, dynamic objects, and varying perspectives, making
it highly representative of real-world driving scenes.
KITTI is widely recognized in autonomous driving re-
search as a rigorous testbed, especially for algorithms
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that need to perform well in challenging, real-world
conditions.

II. IMPLEMENTATION DETAILS

Our model was trained for 20,000 iterations on an NVIDIA
RTX 3090 GPU, employing the AdamW optimizer [3]. The
initial learning rate is 1 x 1073 with a weight decay of
5 x 1072. To preserve the original aspect ratio of the
dataset images, the Cityscapes dataset images were resized
to a resolution of 1,792 x 896, while the KITTI Semantics
dataset images were resized to 2,968 x 896. This resizing ap-
proach ensures consistency in aspect ratio across the datasets,
allowing for accurate and comparable experimental results.
Then, images were randomly cropped to a size of 448 x
448 pixels during the training process. The batch size is set
to three to balance computational efficiency with memory
constraints, ensuring stable model training. To enhance the
model’s robustness, we employed standard data augmentation
techniques, such as random color adjustments, photometric
distortion, rescaling, and flipping.

III. COMPARISONS OF VFMS WITH DIFFERENT
DECODERS

In this subsection, we conduct quantitative comparisons of
VEMs with different decoders on the Cityscapes [ 1] and KITTI
Semantics [2] datasets, respectively. As shown in Table I,
Depth Anything V1 [9] achieves superior performance when
the decoder is UperNet [6]. This observation may be attributed
to the extensive receptive fields, which are enhanced by the
pyramid pooling module at the final stage. Given the excellent
performance of UperNet, our experiments will uniformly adopt
it as the decoder. Moreover, we observe that Segmenter [7]
consistently outperforms other Transformer-based methods.
Conversely, the results of the more impressive Mask2Former
[8] are unsatisfactory. We speculate that these unexpected
results may be due to the smaller crop size, which restricts
the range of spatial features that deformable convolutions can
access, further reducing the model’s ability to deform its kernel
over meaningful parts of the image. Therefore, for resource-
constrained driving scene parsing, CNN-based methods are
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TABLE I: Quantitative comparisons of VFMs with different decoders on the Cityscapes and KITTI Semantics datasets.

Dataset ‘ VEM Backbone Decoder Type Decoder mFsc (%) T mloU (%)t aAcc (%)t mPre(%)1T mRec (%)t
DANet [5] 88.19 79.75 95.93 88.69 87.90
CNN-Based
UperNet [6] 88.94 80.88 96.21 89.12 88.89
DINOV2 [4]
Segmenter [7] 87.65 78.98 95.65 88.45 86.99
Transformer-Based
Mask2Former [8] 81.63 67.56 95.43 77.27 78.02
) DANet [5] 88.49 80.19 96.16 89.09 88.11
3 CNN-Based
& UperNet [6] 89.20 81.24 96.41 90.12 88.41
2 Depth Anything V1 [9]
2 Segmenter [7] 88.38 80.08 96.05 89.95 87.08
O Transformer-Based
Mask2Former [8] 79.88 65.83 95.43 81.06 74.96
DANet [5] 88.35 79.98 96.02 88.52 88.30
CNN-Based
UperNet [6] 88.93 80.85 96.27 89.54 88.44
Depth Anything V2 [10]
Segmenter [7] 87.88 79.33 95.86 89.12 86.84
Transformer-Based
Mask2Former [8] 81.53 63.86 95.21 77.34 73.51
DANet [5] 86.59 77.79 95.32 88.25 85.63
CNN-Based
UperNet [6] 86.90 78.28 95.37 87.84 86.52
DINOV2 [4]
Segmenter [7] 85.41 76.92 95.27 89.63 83.56
Transformer-Based
Mask2Former [£] 76.71 53.43 94.27 81.93 61.22
2 DANet [5] 86.61 78.07 95.42 89.77 84.83
g CNN-Based
=] UperNet [6] 86.28 77.65 95.58 89.50 84.55
3 Depth Anything V1 [9]
— Segmenter [7] 85.16 76.60 95.62 89.86 82.90
£ Transformer-Based
v, Mask2Former [£] 80.56 52.35 94.46 81.51 59.88
DANet [5] 86.51 77.63 95.17 88.51 85.48
CNN-Based
) UperNet [6] 87.36 79.14 95.61 89.41 86.13
Depth Anything V2 [10]
Segmenter [7] 85.80 77.23 95.38 89.27 84.09
Transformer-Based
Mask2Former [8] 78.26 54.07 94.30 76.09 61.97

TABLE II: The amounts of parameters, Flops and FPS of HFIT
and other methods on the Cityscapes dataset.

Methods Params(M)  Flops (GFLOPs)  FPS (img/s)
SNE-RoadSeg [11] 201.33 410.11 1.67
OFFNet [12] 25.22 21.54 1.22
MEFNet [13] 0.74 6.12 4.78
FuseNet [14] 44.18 186.50 3.10
OCRNet [15] 55.52 176.83 2.03
KNet [16] 60.41 157.77 1.94
EMANet [17] 39.99 129.81 2.99
Single-Modal VFMs 308.11 313.74 1.32
ViTAdapter [ 18] 329.57 437.37 0.48
ViT-CoMer [19] 390.81 610.86 0.32
HFIT (ours) 412.52 471.56 0.20

more appropriate, as they prioritize local feature extraction
and progressively construct a comprehensive understanding,
making them more robust when dealing with limited input
sizes. Whereas for transformer-based methods that highly rely
on the global context, scenarios with diverse datasets and
training spaces are more suitable for them, allowing them to
capture long-range dependencies among features at different
spatial locations.

IV. PARAMETERS, FLOPS AND FPS COMPARISONS

As shown in Table II, HFIT has the highest number of
parameters and FLOPs among all the methods, resulting in
the lowest Frames per second (FPS) of 0.20 img/s. Compared
to previous models like SNE-RoadSeg [1 1] and FuseNet [14],
HFIT’s substantial parameter count and computational cost
reflect its complex architecture, likely due to an enhanced
feature extraction capability and deeper layers aimed at captur-
ing intricate semantic information from driving scenes. This
complexity is beneficial for tasks demanding high accuracy
but results in a trade-off with inference speed, especially on
large datasets like Cityscapes. In contrast, lightweight models
like MFNet [13] maintain higher FPS at the cost of reduced
representational power. To address this trade-off, a potential
future strategy could involve optimizing HFIT’s architecture
by applying parameter reduction techniques, such as pruning
or quantization, or by incorporating knowledge distillation
strategy to retain performance while reducing model size.

V. DISCUSSION

The advancements in multi-modal models for autonomous
driving have opened new pathways for robust scene under-
standing and decision-making. In this section, we discuss how
HFIT can contribute to advancing recent studies on large
models in autonomous driving.

« 3D Spatial Understanding: LiDAR-LLM [20] leverages

large language models (LLMs) for understanding sparse
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outdoor LiDAR data, offering a powerful approach for 3D
scene comprehension. If combined with LiDAR-LLM,
HFIT could better handle LiDAR-based data and gain
deeper insights into 3D spatial structures within driving
scenes. This would allow HFIT to process LiDAR data
and depth-based visual cues simultaneously, improving
its overall scene parsing and 3D spatial understanding
abilities of driving environments.

Multi-modal Contextual Understanding: The integra-
tion of LLMs into the HFIT framework would enable the
model to interpret ambiguous or complex visual inputs
through a language-informed lens. This capability could
significantly improve semantic alignment across multi-
ple sensor modalities (e.g., RGB, depth, and LiDAR),
allowing HFIT to understand context more effectively.
By leveraging LLMs, HFIT could contextualize visual
features in the driving environment and make better
decisions based on high-level semantic understanding.
Graph-Based Reasoning for Sequential Decision-
Making: One promising direction for the future evolution
of HFIT lies in incorporating graph-based reasoning
for multi-step decision-making. HFIT currently excels at
parsing RGB-D driving scenes, but it operates primarily
as a static model that processes inputs in a single step. In
contrast, DriveLM [21] introduces the concept of Graph
VQA, where reasoning is structured through a series
of perception, prediction, and planning question-answer
pairs. By integrating this multi-step reasoning process
into HFIT, we could enable it to handle more dynamic
and evolving driving environments, where decisions need
to be continuously updated based on new inputs. For ex-
ample, HFIT could first localize key objects in the scene,
then predict possible interactions between those objects
(e.g., vehicle trajectories or pedestrian movements), and
finally plan actions based on these predictions. This
would bring HFIT closer to mimicking human-like rea-
soning in driving situations, making it more adaptable
and responsive to real-time challenges.

In conclusion, the future evolution of HFIT lies in in-
tegrating advancements from recent multi-modal models in
autonomous driving. These advancements would make HFIT
not only more accurate and robust but also more flexible and
human-like in its decision-making process, paving the way for
smarter and more interactive autonomous driving systems.
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