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Fig. 1. Qualitative results of Un-ViTAStereo and SDCO on the Middlebury dataset.

SUPPLEMENTARY MATERIAL

A. Comparisions on the Middlebury Dataset

We have further compared our proposed unsupervised Vi-
TAStereo [3] (Un-ViTAStereo) with SDCO [1] on the Mid-
dlebury dataset [2] in terms of end-point error (EPE). The
qualitative and quantitative experimental results are presented
in Fig. 1 and Table I, respectively. It can be observed that
our proposed Un-ViTAStereo demonstrates superior stereo
matching accuracy in 10 out of the 15 scenes. However,
ViTAStereo also exhibits notably higher EPE in two scenes,
the Jade and Vintg. The disparity maps visualizations in Fig.
1 suggest that this performance degradation is caused by
the excessively large ground-truth disparities that exceed the
maximum disparity range supported by Un-ViTAStereo, which
has been set to 192 during the network training process.

While in scenes with typical disparity ranges, Un-ViTAStereo
exhibits superior stereo matching accuracy in areas with both
smooth and discontinuous disparities.

B. Ablation Study on Relative Depth Maps

High-quality monocular depth estimation results help im-
prove the accuracy and efficiency of our proposed loss func-
tions in transferring 3D geometric knowledge to a stereo
matching network. In response to your suggestion, we have
conducted ablation studies on the SceneFlow dataset [6] by
taking input as relative depth maps generated from various
Depth Anything models and ViT sizes. The quantitative results
are presented in Table II. It can be observed that acquiring
monocular relative depth results from different monocular
depth estimation VFMs results in an EPE variation of less than



TABLE I
COMPARISONS WITH SDCO [1] ON THE MIDDLEBURY DATASET [2]. ALL RESULTS ARE IN EPE (PIXEL). THE BEST RESULTS ARE SHOWN IN BOLD TYPE.

Method Adir ArtL Jade Motor MotorE Piano PianoL Pipe Playr Playt PlaytP Recy Shelv Teddy Vintg
SDCO [1] 149 3.62 814 242 243 3.27 834 481 457 320 214 257 929 115 6.51
Un-ViTAStereo 1.23 342 564 2.75 2.57 1.53 355 499 246 281 141 140 434 102 166

KITTI Stereo 2012 Dataset
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Fig. 2. Additional comparisons with SoTA unsupervised stereo matching networks, including OASM-Net [7], Flow2Stereo [8], and Permutation-Stereo [9],
published on the KITTI Stereo 2012 benchmark [10]. The images in the first row of each method represent the estimated disparity maps and images in the

second row denote the visualizations of D1 error.

TABLE 11
ABLATION STUDY ON THE MONOCULAR DEPTH ESTIMATION VFMSs.

Depth Anything V1 [4] Depth Anything V2 [5]
ViT Large ViT Large ViT Base
2.78 2.75 2.90

VEM

ViT Base

EPE (pixel) 2.86

6%, demonstrating the robustness of our knowledge transfer-
based loss functions to relative depth maps of varying quality.
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Fig. 4. Visualizations of disparity estimation results of Un-VITAStereo on the ETH3D dataset. [13]
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