Playing to Vision Foundation Model's:
Strengths in Stereo Matching
Chuang-Wei Liu
Qijun Chen
Rui Fan
[Supplementary Material]
[Paper]
[GitHub]
The code can be found in this repository.

Abstract

Stereo matching has become a key technique for 3D environment perception in intelligent vehicles. For a considerable time, convolutional neural networks (CNNs) have remained the mainstream choice for feature extraction in this domain. Nonetheless, there is a growing consensus that the existing paradigm should evolve towards vision foundation models (VFM), particularly those developed based on vision Transformers (ViTs) and pre-trained through self-supervision on extensive, unlabeled datasets. While VFMs are adept at extracting informative, general-purpose visual features, specifically for dense prediction tasks, their performance often lacks in geometric vision tasks. This study serves as the first exploration of a viable approach for adapting VFMs to stereo matching. Our ViT adapter, referred to as ViTAS, is constructed upon three types of modules: spatial differentiation, patch attention fusion, and cross-attention. The first module initializes feature pyramids, while the latter two aggregate stereo and multi-scale contextual information into fine-grained features, respectively. ViTAStereo, which combines ViTAS with cost volume-based stereo matching back-end processes, achieves the top rank on the KITTI Stereo 2012 dataset and outperforms the second-best network StereoBase by approximately 7.9% in terms of the percentage of error pixels, with a tolerance of 3 pixels. Additional experiments across diverse scenarios further demonstrate its superior generalizability compared to all other state-of-the-art approaches. We believe this new paradigm will pave the way for the next generation of stereo matching networks.


Video

[Bitube Video Link]
[Youtube Video Link]

Acknowledgements

This research was supported by the National Natural Science Foundation of China under Grant 62233013, the Science and Technology Commission of Shanghai Municipal under Grant 22511104500, the Fundamental Research Funds for the Central Universities, and Xiaomi Young Talents Program.